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Abstract
Oligonucleotides, comprising single or double strands of RNA or DNA, are vital chemical compounds used in various
laboratory and clinical applications. They represent a significant class of therapeutics with a rapidly expanding range of uses.
Between 1998 and 2023, 19 oligonucleotides have received approval from the U.S. Food and Drug Administration (FDA).
Their synthesis methods have undergone significant evolution over time. This review examines several oligonucleotide
synthesis techniques, including phosphodiester, phosphotriester, and phosphoramidite approaches. It begins with a
discussion of an early synthesis method involving a phosphoryl chloride intermediate, which proved unstable and prone to
hydrolysis. The review then transitions to the solid-phase synthesis method, which uses polymer resins as a solid support,
emphasizing its advantages over both phosphotriester and phosphoramidite techniques. This is followed by an exploration of
recent advancements in oligonucleotide enzymatic synthesis, concluding with a discussion on modifications to bases, sugars,
and backbones designed to improve their properties and therapeutic potential.
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Introduction

Oligonucleotides are oligomers composed of repeating
nucleotide monomers, comprising deoxyribose or ribose
sugar, nitrogenous bases, and a phosphate backbone [1].
Currently, oligonucleotides have garnered significant inter-
est among chemists due to their extensive utilization in the
pharmaceutical industry [2–4]. Oligonucleotides, short
DNA or RNA molecules, serve as versatile tools with a
wide range of applications in genetic testing, research, and
forensics [5]. They are typically produced in the laboratory
through solid-phase synthesis (SPS) and can be tailored as
single- and double-stranded molecules with precise

sequences [6–8]. Consequently, they play pivotal roles in
numerous processes such as artificial gene construction [9],
polymerase chain reaction (PCR) [10], DNA sequencing
[11], molecular cloning [12], and molecular probing [13]. In
nature, oligonucleotides are often found microRNAs
molecules involved in gene expression regulation, including
mRNA, or as byproducts resulting from the degradation of
larger nucleic acid molecules [14].

Oligonucleotides possess a unique capability to bind
specifically to their complements, such as DNA or RNA,
leading to the formation of duplexes or, less frequently,
higher-order hybrids. This characteristic enables the use of
oligonucleotides as probes for identifying specific DNA or
RNA sequences [14, 15]. Modern techniques for utilizing
oligonucleotides include DNA microarrays, Southern blots,
allele-specific oligonucleotide analysis, fluorescent in situ
hybridization (FISH), PCR, and the synthesis of artificial
genes [16].

Oligonucleotides have been utilized to treat rare diseases,
including cardiovascular and metabolic disorders, oncology,
infections, neurological and muscular disorders, as well as
ophthalmological conditions [17–20]. They are also
undergoing clinical trials for the treatment of dermatologi-
cal, gastrointestinal, and hormonal disorders [21].

FDA-approved oligonucleotide therapeutics (Table 1)
utilize various mechanisms: Antisense oligonucleotides
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(ASOs) such as eteplirsen and viltolarsen modify splicing or
promote mRNA degradation by masking exons and indu-
cing their skipping, which reduces disease-causing proteins
[22, 23]. Small interfering RNAs (siRNAs) like patisiran
target and degrade specific mRNA to suppress gene
expression [24]. Aptamers, such as pegaptanib, and ava-
cincaptad pegol, are designed to selectively bind to parti-
cular proteins or molecules, thereby modulating their
activity [25].

Overall, 19 oligonucleotides have been approved by the
FDA from 1998 to 2023, 12 from 1998–2020, two in 2021,
one in 2022, and four in 2023 (Table 1), indicating a
growing focus on their synthesis in the coming years [18,
23, 26, 27]. The synthesis of oligonucleotides is currently
facing significant challenges, primarily due to high synth-
esis costs and relatively inferior pharmaceutical properties.
These properties include low chemical stability, limited oral
absorption, and a short lifespan [28, 29].

The structure of oligonucleotides is primarily based on
2’-deoxyribonucleotides (oligodeoxyribonucleotides) or
ribonucleotides, which can be modified in the backbone or
at the 2’ sugar position. These modifications result in var-
ious pharmacological effects. They bring about novel
properties to oligonucleotides, making them an essential
component of antisense therapy (Fig. 1).

This review aims to explore the significance of ther-
apeutic oligonucleotides, their synthesis techniques, and the
various modification methods used to enhance their ther-
apeutic efficacy.

Chemical synthesis

Phosphodiester and phosphotriester approaches

In 1955, Michelson and Todd reported the synthesis of
dithymidinyl [30]. This groundbreaking achievement
marked the inception of oligonucleotide synthesis and
revolutionized the ongoing research in the field [30]. They
discovered chemical transformation by creating the phos-
phate linkage between two thymidine nucleosides [30]. The
process began with the initial synthesis of the 3′ phosphoryl
chloride of a 5′ benzyl-protected thymidine using phenyl-
phosphoryl dichloride. Subsequently, this compound was
reacted with the 5′ hydroxyl group of a 3′ protected thy-
midine. Although the chemical reactions were found to be
compatible and optimal, they proceeded at a relatively
slower speed. Additionally, it was observed that the phos-
phoryl chloride intermediate was unstable and susceptible to
hydrolysis under the reaction conditions (Scheme 1) [30].

The contribution of Khorana and coworkers for the
synthesis of oligonucleotides by introducing the ON-Off
protection, and the phosphodiester approach, which was

considered as a noteworthy development. The ON-Off
approach entailed the temporary protection of 5′-hydroxyl
groups with acid-sensitive protecting groups such as
4-monomethoxytrityl or 4,4′-DMT. Conversely, the phos-
phodiester approach involved the reactivity of a 5′-activated
phosphoester nucleotide with the nucleophilic 3′-hydroxyl
group of another nucleoside using a coupling reagent or
chloride as an activating agent (Scheme 2).

This methodology mimics the natural biosynthesis of
nucleotides, in which the secondary alcohol on position 3′
acts as a nucleophile [31]. Khorana’s discovery found a
pivotal role in pushing forward the synthesis of oligonu-
cleotides, which was a noteworthy development in the
understanding of the genetic code and its significance in the
protein synthesis process [32–34]. Khorana’s remarkable
discoveries were acknowledged with the Nobel Prize in
Physiology and Medicine in 1968 [32–34].

The DMT protecting group approach was warmly wel-
comed due to its stability and the ability to be removed
under mild acidic conditions, making it particularly
advantageous [35]. However, this methodology still
encountered issues with the quantitative formation of side
products, particularly during the protection and deprotection
stages. In the phosphotriester method, the nucleophilic 5′
alcohol position reacted with the activated alcohol in the 3′-
position. The significant advancement was the introduction
of the 2-cyanoethyl group for the first time as the protecting
group into P–OH, which was then applied to SPS [35–38].

Phosphonate and phosphoramidite

Later in 1970, a different approach was put forward which
was known as phosphite-triester approach. In this approach,
reactive P(III) derivatives of nucleosides, such as 3’-O-
chlorophosphites were utilized to react for the bond for-
mation between nucleosides (Scheme 3). Caruthers’
research group capitalized on the benefits of milder and
more selective 1H-tetrazolidophosphites, implementing this
method on solid phase.

In spite of remarkable progress on phosphotriester
chemistry, this area of research is still facing serious chal-
lenges [39]. The average efficiency at each step for repro-
ducibility has remained below 97%, specifically falling
short of reaching the 95% threshold [39]. This drawback
has particularly hampered the routine synthesis of oligo-
nucleotides with chain lengths of less than twenty bases
[39]. Another prominent problem in phosphotriester-based
oligonucleotide synthesis is the longer reaction time for
each step, exceeding one and a half hours [39, 40].

A large number of subsequent advancements in oligo-
nucleotides synthesis technologies have revolutionized the
phosphoramidite chemistry as an efficient oligonucleotides’
synthesis method [38, 41–44].
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Baucage and Caruthers introduced the concept of phos-
phoramidite methodology for oligonucleotides synthesis [45].
At first glance, this approach seems to be a minor modifica-
tion of the phosphotriester method developed by Letsinger,
replacing chlorine leaving groups with an amine (Fig. 2).
However, this simple modification proved very helpful for the
routine synthesis of the oligonucleotides as it revolutionized
the properties of the oligonucleotide molecules [45]. This

tremendous discovery enabled chemists to pre-synthesize the
intermediate compounds for oligonucleotides synthesis such
as phosphitylated or phosphoramidite intermediates, which
could be stored for extended periods [46]. Phosphoramidite
intermediates can be activated on demand using a weak base
when required for synthesis. This enhanced stability has made
phosphoramidite intermediates commercially viable as
reagents for nucleotide synthesis [47].

Scheme 1 Dithymidinyl nucleotide: synthesized by Michelson and Todd. Red color refers to the protecting groups

Fig. 1 Chemical structure of a modifiable oligonucleotide (left) and natural nitrogenous bases with predominant positions of modifications (right)

Medicinal Chemistry Research (2024) 33:2204–2220 2207
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The phosphoramidite intermediate, representing a
nucleotide, typically consists of di-isopropylamine and
2-cyanoethoxy groups attached to the phosphorus atom at
the 3’-position of a cyclopentanose sugar (Fig. 2).

Solution vs solid vs liquid phase approaches

The previous discussion centered on solution-phase oligo-
nucleotide synthesis. In 1965, Letsinger utilized a styrene-
divinylbenzene polymer, also known as a popcorn polymer,
as a solid support for the synthesis of oligonucleotides
through the phosphotriester approach [35].

As of today, SPS of oligonucleotides via phosphor-
amidite remains a widely utilized approach, with numerous
modifications and advancements made over time. These

Scheme 2 Synthesis of dithymidinyl nucleotide through Khorana’s method. Protecting groups are shown in red

Scheme 3 Phosphotriester approach for the synthesis of oligonucleotides. Red color refers to the protecting groups

Fig. 2 Chemical structure of a phosphoramidite nucleotide intermediate

2208 Medicinal Chemistry Research (2024) 33:2204–2220

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



include alterations in solid support materials, variations in
protecting groups, modifications to sugar structures, and
innovations in deprotecting reagents and oxidizing agents
[48]. The pathway for synthesizing oligonucleotides via the
phosphoramidite intermediate approach typically involves
four main steps: deprotection, coupling, oxidation (sulfur-
ization), and capping [49].

Deprotection of the 5’-position involves treating the
compound with di- or trichloroacetic acids in chlorinated
solvents like dichloromethane (DCM) or 1,2-dichloroethane
(1,2-DCE). This step liberates the 5’ alcohol group, making
it available for reaction with an activated nucleotide mole-
cule [50]. While the phosphoramidite pathway represents an
advancement in oligonucleotide synthesis methods, it still
encounters challenges related to the use of non-green
halogenated solvents. Stronger acids or prolonged reaction
times can lead to undesirable side reactions, such as
depurination, limiting the length of oligonucleotides syn-
thesized through chemical processes [50].

After deprotection of the solid-supported nucleotide, it is
prepared to react with an already activated phosphoramidite
intermediate nucleotide. The free 5’OH group on the
nucleotide can react with the incoming phosphoramidite
nucleotide. The phosphoramidite, which contains a
2-cyanoethyloxy group and a di-isopropylamino phosphate at
the 3’ position, is activated using an acid, typically a tetrazole
or another nitrogen heterocycle. The phosphoramidite and
acid activator are combined in a reactor-type tube, where the
acid protonates the di-isopropylamino group at the 3’ posi-
tion, making it ready for substitution by the incoming OH
group. To ensure maximum yield, it is crucial that the acti-
vated nucleotide is present in higher equivalents compared to
the supported chain with the free OH group [51].

During the coupling step, efforts are focused on ensuring
that all free 5’OH groups on the growing oligonucleotide
chain react with the activated phosphoramidite nucleotide.
To address any remaining free OH groups that might not
have reacted, capping is employed. Capping protects these
residual free OH groups to prevent unwanted reactions and
ensure the integrity of the growing oligonucleotide chain
[52]. Capping is crucial to prevent the free 5’OH groups
from reacting with phosphoramidite nucleotides in sub-
sequent steps. If left uncapped, these OH groups would
necessitate n-1 deletions, which would be challenging to
isolate from the synthesized oligonucleotides. Additionally,
in the case of guanosine nucleotides, the O6-position may
sometimes react with the activated phosphoramidate inter-
mediate nucleotides. Moreover, depurination of the growing
chain can occur when the chain is oxidized in the presence
of I2 and water. Therefore, capping is an essential step to
prevent these reactions and is typically carried out in the
presence of N-methyl imidazole (NMI) and acetic anhydride
[53]. These specialized reagents facilitate the acylation of

any free unreacted OH groups present at the 5’ position
[53]. In the final step of the cycle, oxidation at the P-atom of
the growing oligonucleotide chain is performed to convert it
from a phosphite triester to a phosphate triester. This oxi-
dation is achieved with the aid of molecular iodine (I2) in
water (Scheme 4).

Selecting an appropriate base is crucial to prevent depur-
ination during the reaction. Researchers have explored alter-
native oxidizing agents to avoid the presence of water. For
instance, tertiary butyl hydrogen peroxide (TBHP) can be
utilized in organic solvents under anhydrous conditions [54,
55]. Repeating these four steps enables the synthesis of oli-
gonucleotides with the desired characteristics and length. The
terminal nucleotide of the synthesized oligonucleotide is
typically blocked with a dimethoxytrityl (DMT) group, which
can either be retained or capped with a non-nucleoside moiety
at the 5’ position [56]. This final protective group is instru-
mental in modifying the properties of the oligonucleotide,
rendering it hydrophilic, hydrophobic, or UV-active,
depending on the intended application [56]. Finally, the acyl-
protected bases and phophotriesters are deprotected during the
isolation of the synthesized oligonucleotides chain from the
solid support. These bases include methyl amine (MeNH2),
ethyl amine (EtNH2), among others. Subsequently, the oli-
gonucleotides are purified and characterized [57].

Recently, there has been significant progress in advan-
cing phosphoramidite chemistry for the 3’-depho-
sphorylation of oligonucleotide chains. Yamamoto and
colleagues reported the use of mild and efficient
O-alkylphosphoryl groups as a replacement for conven-
tional O-cyanoethylphosphoramidites (Scheme 5). These
alkylated phosphotriesters were found to be more stable in
the presence of alkali compared to their cyanoethyl coun-
terparts. Another exciting achievement was the synthesis of
nucleoside phosphoramidites bearing 1,2-diols and their
incorporation into oligonucleotides [58].

In 2023, a more facile tandem synthesis of the oligonu-
cleotide approach has been adapted for the development of
chemically modified DNA and RNA with easily accessible
and cleavable linkers [59]. The tandem synthesis was per-
formed with 2,2′-sulfonyldiethylene cleavable linkers (X-
linker and X-amidite) that was incorporated in a single
sequence of many-fragments oligonucleotides [59]. The
2,2′-sulfonyldiethylene linkers were investigated for their
ability to self-immolate during the deprotection of DNA and
RNA. This approach was presented as a generalized meth-
odology for oligonucleotide tandem synthesis (Fig. 3) [59].

Oligonucleotides are currently synthesized using auto-
mated SPS with phosphoramidite chemistry. While this
method produces high-quality oligonucleotides on a kilo-
gram scale, the challenge of scaling up for widespread
pharmaceutical use remains. SPS is limited by the high cost
of resins and the need for excess expensive and hazardous

Medicinal Chemistry Research (2024) 33:2204–2220 2209
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reagents, resulting in a high carbon footprint [60]. The
simple concept of atom economy (EA) cannot be applied to
the SPOS synthesis due to the repetition of synthetic steps
and the use of on–off protections considerably affecting the
concept of EA, as a huge amount of the waste is produced at
each synthetic cycle [39, 61]. Additionally, purification is
crucial, as pharmaceutical-grade oligonucleotides require
extremely high purity.

A solution-phase approach to oligonucleotide synthesis
can overcome many limitations, offering scalability
similar to conventional organic synthesis and reducing
reagent use by utilizing homogeneous solutions [62].
While solution-phase methods like phosphotriester and
H-phosphonate chemistries have been widely studied

[63, 64], they require laborious column chromatography
after each step and can face solubility issues with long
oligomers.

The liquid-phase method, which uses soluble polymers
instead of solid-phase resins, addresses these issues by
combining the benefits of both synthesis methods. Various
approaches have been developed, such as the use of cellu-
lose acetate, β-cyclodextrin, and PEG [65, 66]. Early PEG-
based liquid-phase approaches used phosphotriester chem-
istry, with phosphoramidite and H-phosphonate chemistries
also being applied [7]. Non-polymeric methods like ionic
liquid tag-assisted synthesis [67], fluorous tag-assisted
synthesis [68], and AJIPHASE® have further expanded
oligonucleotide synthesis strategies.

Scheme 5 Dephosphorylation of oligonucleotide through phosphotriester intermediate

Scheme 4 A generalized synthesis cycle of an oligonucleotides through phosphoramidite approach

2210 Medicinal Chemistry Research (2024) 33:2204–2220
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Creusen and colleagues developed a one-pot liquid-phase
DNA synthesis method, allowing nucleotide addition
through coupling, oxidation, deprotection, and a single
precipitation step [69]. They highlighted the importance of
the right oxidizing agent, effective DMT cation scavenging,
and using 2-propanol over diethyl ether for precipitation to
prevent depurination during adenine addition [69].

The Livingston group developed an iterative synthesis
platform using organic solvent nanofiltration (OSN) for
scalable purification in liquid-phase oligonucleotide synth-
esis (LPOS). They synthesized and characterized 5-mer and
9-mer 2′-O-methyl phosphorothioate oligoribonucleotides
through eight cycles of chain extension, with OSN mem-
branes enabling purification by separating the product from
smaller reagent debris on a soluble PEG support [70].

Protecting group scheme and the concept of
orthogonality

Protecting groups are essential in the synthesis and manipula-
tion of oligonucleotides, providing the tools necessary for
creating complex and highly specific sequences. These include:
NPPOC (2-(2-Nitrophenyl)propoxycarbonyl), which is a pho-
tolabile group used for orthogonal protection in oligonucleotide
synthesis, allowing for precise microarray production [71].
Wang and co-workers utilized this approach to assemble oli-
gosaccharides through stereoselective glycosylation [72].
Levulinyl (Lev), an orthogonal protecting group that integrates
well with other protection strategies in oligonucleotide synth-
esis [73]. Fmoc (9-Fluorenylmethyloxycarbonyl), a commonly
used protecting group that can be removed under mild basic
conditions and is orthogonal to many other groups [74]. Gaytán
and colleagues employed a combination of DMT-
mononucleotide and Fmoc-trinucleotide phosphoramidites in
oligonucleotide synthesis to create codon-level degenerate oli-
godeoxyribonucleotides [75]. Dma (Dimethylacetamidine), it
prevents unwanted hybridization at undesired sites while
facilitating intended hybridization in oligonucleotides [76].

Enzymatic synthesis

To overcome limitations such as suboptimal yields and
purities, sequence length restrictions, environmental impact,
and lengthy purification steps inherent in traditional

chemical synthesis methods, enzymatic oligonucleotide
synthesis is being developed as an innovative approach.
These advancements aim to improve the efficiency, scal-
ability, and sustainability of oligonucleotide production.
The approach holds great promise for advancing DNA and
RNA synthesis, particularly in applications requiring high
precision and sustainability. Different approaches have been
developed so far [77–80].

Schmitz and Reetz developed a SPOS method using T4
RNA ligase with tentagel or kieselguhr/poly-
dimethylacrylamide supports [81]. Their results show that,
although T4 RNA ligase operates slowly, it effectively
catalyzes the attachment of various 3’,5’-diphosphates and
pre-adenylated 3’-nucleoside phosphates to primers on solid
supports under mild conditions. The researchers highlighted
that the slow rate is inherent to the enzyme, not due to
immobilization effects [81].

Flamme and colleagues synthesized a nucleoside tri-
phosphate analog with dual modifications at the sugar
(LNA) and backbone (thiophosphate) levels and tested its
compatibility with enzymatic DNA synthesis, potentially
addressing some synthetic limitations [82]. While this novel
analog is less well tolerated by polymerases compared to α-
thio-dTTP or LNA-TTP, α-thio-LNA-TTP can still be
successfully used in enzymatic synthesis on universal
templates to introduce phosphorothioated LNA nucleotides
[82].

Lu and coworkers engineered TdT orthologs, identified
from terminal deoxynucleotidyl transferase from Zono-
trichia albicollis, creating (ZaTdT) with over 1000-fold
greater catalytic activity for 3′-ONH2-dNTPs than MmTdT
[83]. They used this enzyme to synthesize a decamer oli-
gonucleotide via iterative extension and deblocking,
achieving de novo DNA synthesis with coupling effi-
ciencies similar to the phosphoramidite process [83].

Later, Sabat and colleagues developed an enzymatic
method to protect 3′-O-modified LNA and DNA nucleo-
tides from phosphatase and esterase activity [84]. They
found that the Poly(U) polymerase (PUP) is a suitable
alternative to TdT and explored engineered DNA poly-
merases for better tolerance of modified nucleotides [84].

Wiegand and coworkers developed a novel enzymatic
platform for RNA oligonucleotide synthesis that operates in
an aqueous, template-independent manner [85]. The
enzyme adds a reversible terminator NTP to the 3’-end of

Fig. 3 Chemical structure of
self-immolate
2,2,sulfonyldiethylene linkers
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the initiator oligonucleotide, followed by deblocking with
mild hydrolysis [85]. This iterative process continues until
the full-length RNA is synthesized and released enzymati-
cally. Unlike chemical methods, no final global deprotec-
tion is required [85].

The Lovelock group reported a biocatalytic method for
efficiently producing oligonucleotides in a single operation,
bypassing the iterative chain extension, oxidation, capping,
and deprotection steps used in traditional synthesis [86].
Utilizing unprotected building blocks and aqueous condi-
tions, their process employs polymerases and endonucleases
to amplify complementary sequences within catalytic self-
priming templates [86]. To demonstrate the effectiveness of
this methodology, they synthesized clinically significant
oligonucleotide sequences with various modifications, such
as prexigebersen, fomivirsen, alicaforsen, trabedersen, and
aganirsen [86].

For recent advancements in the biocatalytic manu-
facturing of nucleosides and cyclic dinucleotides, as well as
progress in enzymatic strategies for producing oligonu-
cleotide therapies, readers are encouraged to consult Giesen
et al.’s review [80].

Oligonucleotides modifications

Oligonucleotides can be challenging to deliver and are often
rapidly cleared by the kidneys. To overcome these limita-
tions and improve their pharmacological properties, a range
of chemical modification strategies have been extensively
studied [87–89]. These modifications are designed to
increase stability, enhance target affinity and bioavailability,
and improve cellular uptake [90]. The effectiveness of these
improvements depends on the specific chemical modifica-
tions employed. The modifications in the oligonucleotides
structure can be generalized into several categories, each
aiming to enhance the stability, specificity, and efficacy of
the oligonucleotides. These categories include: sugar mod-
ifications, phosphate modification, backbone modification
and finally the end 5’ group modifications [91]. These
modifications of oligonucleotides can be associated with
diverse properties and various classes of therapeutic mole-
cules, significantly enhancing their utility in clinical appli-
cations. Here, we will explore various chemical
modifications, including alterations to the backbone, base,
sugar, and other intriguing modifications (Table 2).

Base modifications

Base modifications significantly enhance the interaction of
oligonucleotides with the target nucleotide, resulting in a
thermodynamically stable oligonucleotide-target RNA com-
plex. This heightened interaction makes the oligonucleotide

molecule more conducive for sensing applications of the
target RNA molecules [92]. Furthermore, this increased affi-
nity of the complex is utilized for selectively blocking mRNA
molecules through binding, which can conceal the mRNA
splice site. Consequently, mRNA translation can be halted
[93].

Among the two types of bases, purines and pyrimidines,
the 5-position of the latter is predominantly utilized for base
modifications (Fig. 1) [92]. There is a plethora of studies
have focused on modifying this base position with a
C-methyl group, rendering it highly stable, particularly
when the methyl group is stacked within the main groove of
the RNA duplex [94]. The critical aspect of base mod-
ification lies in targeting positions more exposed to the
solvent at the major groove. Hence, this position is pre-
dominantly selected for modifications. Examples of these
modifications can be seen in mipomersen, eteplirsen, nusi-
nersen, inotersen, tofersen, nedosiran, and eplontersen
(Table 2). On the other hand, purine bases are typically
modified at the 6- and 7-positions, while pyrimidines are
functionalized at the 4- and 5-positions [92], However, there
are no FDA-approved oligotherapeutics yet that exhibit
these specific modifications.

Besides naturally occurring pyrimidine and purine scaf-
folds, other bases termed universal bases have been utilized.
These bases are derivatives of pyrrole, imidazole, and
indoles, relying on aromatic ring π-stacking instead of the
hydrogen bonding characteristic of natural purine and pyr-
imidine bases (Fig. 4) [91, 95]. The π-stacking interaction
serves as the primary driving force for the stability of the
DNA-RNA duplex. Chemical modification of universal
bases is a strategy to enhance this π-stacking interaction, as
demonstrated by the synthesis of oligonucleotides incor-
porating tricyclic phenoxazine and G-clamp cytosine deri-
vatives [96, 97].

Sugar modifications

The ribose sugar moiety in RNA, including oligonucleo-
tides, can be modified at the 2’ position to adopt a favorable
puckered conformation, thereby increasing the likelihood of
duplex formation and enhancing the stability of the oligo-
nucleotides against nucleases. As a result of this enhanced
stability, oligonucleotides can prolong their pharmacokinetic
lifespan for weeks. Studies have shown that certain specific
groups at the 2’ position of the sugar can exert a beneficial
effect on stabilizing the conformation of oligonucleotides
[98]. The 2’-fluoro (2’-F) modification on the ribose moiety
boosts oligonucleotide activity by enhancing nuclease
resistance and improving binding affinity to target RNA or
DNA. This modification also preserves the RNA-like
structure, increasing stability and overall effectiveness in
therapeutic applications. Drugs featuring this modification
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Table 2 Chemical structures of FDA approved oligonucleotides

# Generic
Name

Sequence Modification Ligan
d

5'-L

Bas
e

Sugar Back-
bone

1 Fomivirsen --- -- X=S H
2 Pegaptanib --- 2'-

positi
on

--- L1

3 Mipomerse
n

C*, 
U*

2’-
positi

on

X=S H

4 Defibrotide Not specified-mixture of oligonucleotides N/A N/A N/A N/A
5 Eteplirsen T(U*

)
PMO phosphor

odiamida
te

L2

6 Nusinersen C*, 
U*

2’-
positi

on

X=S H

7 Patisiran --- 2’-
positi

on

--- H

8 Inotersen C*, 
U*

2’-
positi

on

X=S H

9 Givosiran --- 2’-
positi

on

X=S 5', 
L=H
3', 

L96
10 Golodirsen --- PMO phosphor

odiamida
te

L2

11 Viltolarsen --- PMO phosphor
odiamida

te

C"

12 Lumasiran --- 2’-
positi

on

X=S 5', 
L=H
3', 

L96
13 Inclisiran --- 2’-

positi
on

X=S 5', 
L=H
3', 

L96
14 Casimerse

n
--- PMO phosphor

odiamida
te

L2

15 Vutrisiran --- 2’-
positi

on

X=S 5', 
L=H
3', 

L96
16 Tofersen C*, 

U*
2’-

positi
on

X=S H

17 Avacincapt
ad pegol

--- 2’-
positi

on

--- H

18 Nedosiran U* 2’-
positi

on
, L4

X=S 5', 
L=H

19 Eplonterse
n

C*, 
U*

2’-
positi

on

X=S L5

N/A not applicable
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include pegaptanib, patisiran, givosiran, lumasiran, incli-
siran, vutrisiran, avacincaptad pegol, and nedosiran. Addi-
tionally, the OMe group at the 2’ position, achieved by
replacing OH with Me, has been widely studied for its
ability to improve duplex stability, with patisiran being one
of nine FDA-approved oligonucleotide drugs utilizing this
modification.

Martin first reported 2’-O-methoxyethyl (MOE)-mod-
ified building blocks and oligonucleotides in 1995 [99].
Additionally, MOE and 2’ F groups have been explored and
shown some efficacy when present at the 2’ position of the
sugar [100]. Examples of 2’-MOE-modified therapeutic
oligonucleotides include fomivirsen, mipomersen, nusi-
nersen, inotersen, tofersen, and volanesorsen [100].

Another key modification replaces the ribose or deox-
yribose sugar backbone with a morpholine ring, forming
Phosphorodiamidate Morpholino Oligomers (PMOs) and
connecting the bases through phosphorodiamidate bonds
instead of phosphodiester bonds. This modification greatly
enhances the stability of the oligonucleotide, making it
resistant to nucleases and other degrading enzymes. PMOs
are widely used in antisense therapies due to their improved
stability, low toxicity, and effective ability to block specific
RNA sequences, thereby inhibiting gene expression [101,
102]. FDA-approved PMOs include eteplirsen, viltolarsen,
golodirsen, and casmersin, used to treat Duchenne muscular
dystrophy by targeting specific exons in the dystrophin
gene. These drugs exemplify modifications in both the
sugar unit and the phosphorodiamidate backbone.

A more sophisticated approach for sugar modification
involves locking, leading to the generation of Locked

Nucleic Acid (LNA), where the 2’ and 4’ positions are
linked through an oxymethylene linkage (Fig. 5) [103].

This modification has revolutionized the properties of
oligonucleotides, particularly in the therapeutic realm. The
puckered conformation has shown enhanced binding affi-
nity towards complementary DNAs and RNAs. In addition,
the puckered LNA oligonucleotide molecule has demon-
strated reduced length within the sequence and an
improvement in mismatch discrimination or base-pairing
selectivity in the Watson-Crick model [104–106]. This
stability also improved the resistance of LNA to biological
degradation, such as enzymatic degradation. The antisense
properties of therapeutic oligonucleotides have also been
enhanced, as exemplified by the mRNA inhibition with
Ribonuclease (RNase) H. Furthermore, There are some
reports where non-RNase has also been investigated for
antisense properties [107]. Wahlestedt et al. were the first to
discover the potent and safe antisense role of other LNA
molecules as a modification in vivo [108]. Following this
discovery, numerous reports have been published on the
antisense role of LNA-modified oligonucleotide molecules,

Fig. 5 A segment of a locked nucleic acid with normal confirmation
(left) and its puckered confirmation (right)

Fig. 4 Chemical structure of
other modified nitrogenous
bases used for the synthesis of
modified oligonucleotides
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encompassing gene silencing both in vivo and in vitro.
Recent studies have also explored the inhibition of HIV-I
expression using LNA-modified oligonucleotides
[109–112].

Another crucial class of LNA-modified oligonucleotides
includes aptamers, which are short DNA or RNA molecules
[113], with a higher affinity to bind to the target due to the
three-dimensional puckering of the sugar moiety [114].
Hence, they surpass their non-LNA counterparts due to their
high affinity for the target and their increased resistance to
nucleases [108]. Non-LNA aptamers, whether DNA or
RNA, can be modified into their LNA counterparts through
the common systematic evolution of ligands by exponential
enrichment (SELEX) process, and by post-chemical mod-
ifications of the aptamers sequences LNA nucleotides
[115, 116]. The second method involves the utilization of
LNA-modified sequence libraries for the generation of LNA
aptamers through standard SELEX methodology
[117–119]. Other classes of LNA-modified oligonucleotides
include LNA-modified siRNA and microRNA modified
through LNA [120–124].

Sugar modifications have recently gained traction due to
the growing application of oligonucleotides in the biome-
dical field. A wealth of literature is available on the synthesis
of various sugar-modified oligonucleotides [125, 126].

Backbone modifications

Backbone-modified oligonucleotides represent the first
generation of antisense oligonucleotides, featuring mod-
ifications that include functionalities and groups such as

guanidinium, amides, amines, thioethers, thioesters, tria-
zole, boranophosphate, methylphosphonate, N-3ʹ-phos-
phoramidate, and S-methylthiourea [59]. These
modifications can exist as anions, cations, or neutral groups,
enhancing the physical and biological properties of oligo-
nucleotide molecules and ultimately improving their per-
formance in target applications (Fig. 6) [59, 91].

Among these, phosphorothioate (PS) diesters and phos-
phorodiamidate in the morpholino-containing oligonucleo-
tides (PMOs) have proven to be of pivotal importance in
oligonucleotide modification. The remarkable effect of the
PS di-ester modification was the reduction of the melting
temperature (Tm) by 0.5–0.7 °C per each modification
[127]. A moderate balance was sought to achieve optimal
properties with a balanced possible modifications [128].
Thus, PS modification was observed to enhance the bioa-
vailability and cellular uptake of PS oligonucleotides. This
improvement is attributed to the increased hydrophobicity
of sulfur atoms in the modified oligonucleotides compared
to the hydrophilic oxygen in the unmodified molecules
(Scheme 6).

Gene silencing is an important biological process
achieved using the phosphorothiolate (PS) internucleoside
linker. This PS linker provides firm resistance to nuclease
enzymes, resulting in better bioavailability of the oligonu-
cleotide molecules. Moreover, the anionic nature of the PS
group enhances the base-pairing affinity of the oligonu-
cleotide molecules [129]. Higher plasma-membrane affinity
led to observed improvements in pharmacokinetic proper-
ties and cellular uptake. The first FDA-approved antisense
drug, fomivirsen, containing the PS group, was approved

Fig. 6 Anionic, cationic and
neutral groups used for
backbone modification of
oligonucleotides
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for treating AIDS-related cytomegalovirus (CMV) retinitis.
However, it exhibited reduced specificity in binding to
target oligonucleotide sequences [130].

Another significant modification is N-acet-
ylgalactosamine (GalNAc), which acts as a ligand molecule
binding to the asialoglycoprotein receptor (ASGPR). The
RNA-GalNAc conjugate is crucial in the treatment of acute
hepatic porphyria, approved by the FDA and commercially
available as givosiran [131].

Backbone modifications are introduced by either on-resin
coupling of a monomer or by coupling a dinucleoside with
the artificial linkage. The monomer method faces challenges
due to potential chemical incompatibilities, while the dimer
approach is often preferred for constructing more complex
backbones. The monomer method has been used for mod-
ifications such as PS [132], phosphorodithioates [133],
boranophosphates (borano) [134], phosphoramidates (PA)
[135], methylphosphonates [136], and amides [137]. The
dimer approach is often favored for synthesizing more
complex backbones on a solid support [138]. The lack of
optimized, user-friendly protocols for on-resin artificial
backbones and the difficulties of the dimer approach are key
obstacles in therapeutic oligonucleotides research [138].

Other modifications

Studies have shown that sugar-modified oligonucleotides
are less toxic than their base-modified counterparts (phos-
phorothioates); however, their potential to cleave target
RNA is inferior. RNase cleavage is considered a crucial and
vital process in the application of therapeutic oligonucleo-
tides. Therefore, more advanced modifications have led to
the development of ‘gamer’ type oligonucleotides, achieved
by simultaneously incorporating 2’-O-alkyl groups on the
sugar and phosphorothioate base modifications [139].

Peptide Nucleic Acids (PNAs) represent the third genera-
tion of oligonucleotide molecules, introduced by replacing the
phosphodiester group with a synthetic, flexible pseudo-
peptide polymeric N-(2-aminoethyl)glycine molecule [140].
This unique structure has the base molecule directly attached
to the backbone via a methylene carbonyl group. The PNA
class of oligonucleotides revolutionized the interaction with
the complementary RNA or DNA strand through hybridizing
with greater affinity and outstanding location specificity
compared with the natural counterparts (Fig. 7) [141].

Conclusion

Oligonucleotides have attracted significant attention from
researchers due to their potential use as alternative medicines.
These short DNA or RNA molecules can be designed to target
specific sequences within the human genome, allowing for
highly precise therapeutic interventions. The initial synthetic
methodologies employed reagents and starting materials that
created isolation problems, such as the water-sensitive phos-
phoryl chloride intermediate, which hindered the reaction by
producing side products. A modified approach used a
4-monomethoxytrityl and 4,4-DMT protecting group, which
was acid-sensitive. Besides, early solution-based methodolo-
gies required large quantities of organic solvents, which were
not considered environmentally friendly. These methodologies
were later replaced by SPOS. Recently, new and improved
methods of oligonucleotide synthesis have been developed.
One such approach is the use of O-alkylphosphoryl groups,
which replaced the conventional
O-cyanoethylphosphoramidites. These O-alkylphosphoryls
were found to be more stable in the presence of alkali than
their cyanoethyl counterparts. In 2023, easily accessible and
easily cleavable 2,2′-sulfonyldiethylene linkers (X-linker and
X-amidite) were introduced for the synthesis of modified oli-
gonucleotides. Enzymatic synthesis has greatly advanced oli-
gonucleotide production by enabling single-step
biotransformation, removing the need for repetitive chain
extension, oxidation, capping, and deprotection steps. This

Scheme 6 Phosphorothioate backbone modification of a segment of oligonucleotides molecule

Fig. 7 Chemical structure of peptide nucleic acid (PNA)
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method provides access to a broad range of oligonucleotide
sequences and modifications, which can be further enhanced
through the discovery or engineering of biocatalysts with a
wider substrate scope.

Due to the increased use of oligonucleotides in biomedical
applications, many modifications to the oligonucleotide nucleus
have been made to synthesize antisense oligonucleotides.
These modifications include changes to the sugar, backbone,
and base modifications such as guanidinium, amides, amines,
and thioethers. These modifications have revolutionized the
properties of oligonucleotides, significantly enhancing their
antisense capability and target specificity. As a result, third-
generation peptide nucleic acids and phosphorodiamidate
morpholino oligomers were developed, demonstrating
remarkable locus-specificity and gene inhibition efficiency.
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